Ir arriba
Información del artículo

Coherence resonance and stochastic resonance in an excitable semiconductor superlattice

E. Mompó, M. Ruiz-Garcia, M. Carretero, H.T. Grahn, Y. Zhang, L. Bonilla

Physical Review Letters Vol. 121, nº. 8, pp. 086805-1 - 086805-6

Resumen:

Collective electron transport causes a weakly coupled semiconductor superlattice under dc voltage bias to be an excitable system with 2N+2 degrees of freedom: electron densities and fields at N superlattice periods plus the total current and the field at the injector. External noise of sufficient amplitude induces regular current self-oscillations (coherence resonance) in states that are stationary in the absence of noise. Numerical simulations show that these oscillations are due to the repeated nucleation and motion of charge dipole waves that form at the emitter when the current falls below a critical value. At the critical current, the well-to-well tunneling current intersects the contact load line. We have determined the device-dependent critical current for the coherence resonance from experiments and numerical simulations. We have also described through numerical simulations how a coherence resonance triggers a stochastic resonance when its oscillation mode becomes locked to a weak ac external voltage signal. Our results agree with the experimental observations.


Índice de impacto JCR y cuartil WoS: 9,227 - Q1 (2018); 8,100 - Q1 (2023)

Referencia DOI: DOI icon https://doi.org/10.1103/PhysRevLett.121.086805

Publicado en papel: Agosto 2018.



Cita:
E. Mompó, M. Ruiz-Garcia, M. Carretero, H.T. Grahn, Y. Zhang, L. Bonilla, Coherence resonance and stochastic resonance in an excitable semiconductor superlattice. Physical Review Letters. Vol. 121, nº. 8, pp. 086805-1 - 086805-6, Agosto 2018.


    Líneas de investigación:
  • Análisis de datos
  • Nanotecnología
  • Modelado numérico